

NOUVELLE PRATIQUE D'EMBALLAGE, QUE FAIRE PAR RAPPORT À L'EN 11607?

Frédy Cavin

Chef du service de Stérilisation centrale du CHUV Lausanne, Suisse

Définition

• Un emballage est un objet destiné à contenir et à protéger des marchandises, à permettre leur manutention et leur acheminement du producteur au consommateur ou à l'utilisateur, et à assurer leur présentation

C'est l'emballage qui donne la mesure de la différence culturelle

Nouvel emballage plus résistant

Matériau base polyoléfines sous forme de micro filaments

Pourquoi un emballage plus résistant ?

- La majorité des événements qui conduisent à une perte de stérilité, sont directement liés aux facteurs suivants :
 - Contraintes physiques entre stérilisation et points d'utilisation (percements, déchirures, micro trous)
 - Émission de particules à l'ouverture
 - Perte d'intégrité du scellage

Résistance Mécanique

Test de résistance à la perforation selon la méthode

ASTM D3763: ULTRA est jusqu'à 4 fois plus résistant

à la perforation que les matériaux poreux

conventionnels:

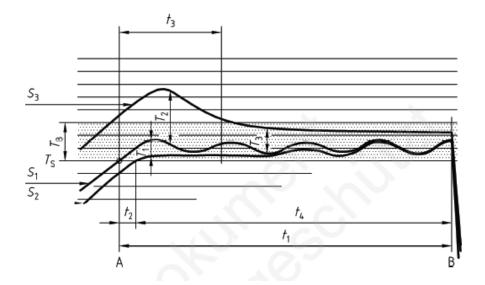
Premiers contacts (fin 2009)

- Accepteriez-vous de faire des tests ?
- Questions :
 - Faire quelques emballages pour voir ?
 - Pas d'intérêt majeur
 - Comment apporter un élément objectivable ?

Question existentielle!

- Faut-il valider son stérilisateur avec le nouvel emballage
 - EN ISO 17665
- ou valider le nouvel emballage avec son stérilisateur
 - EN ISO 11607

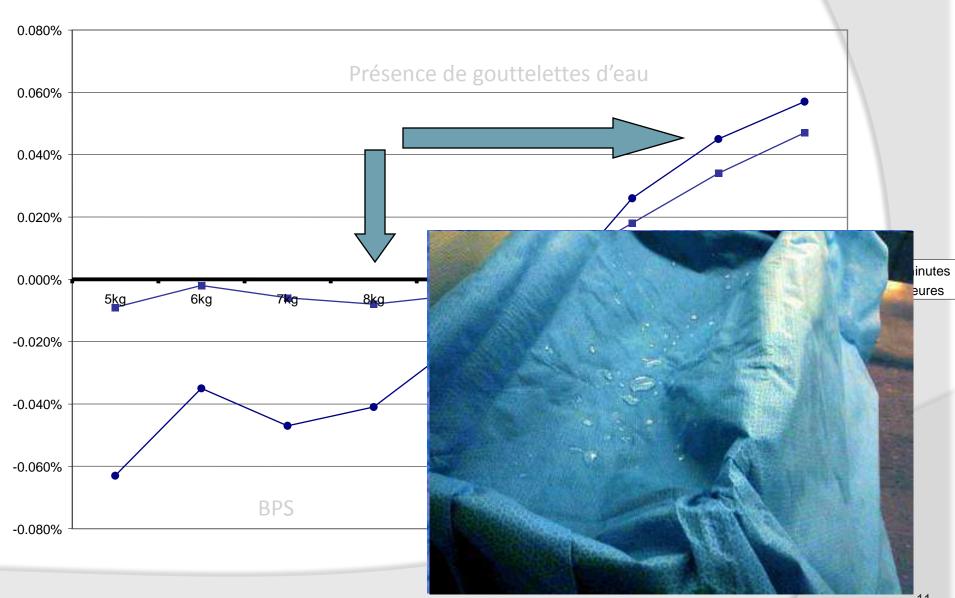
?


EN ISO 17665-1, -2

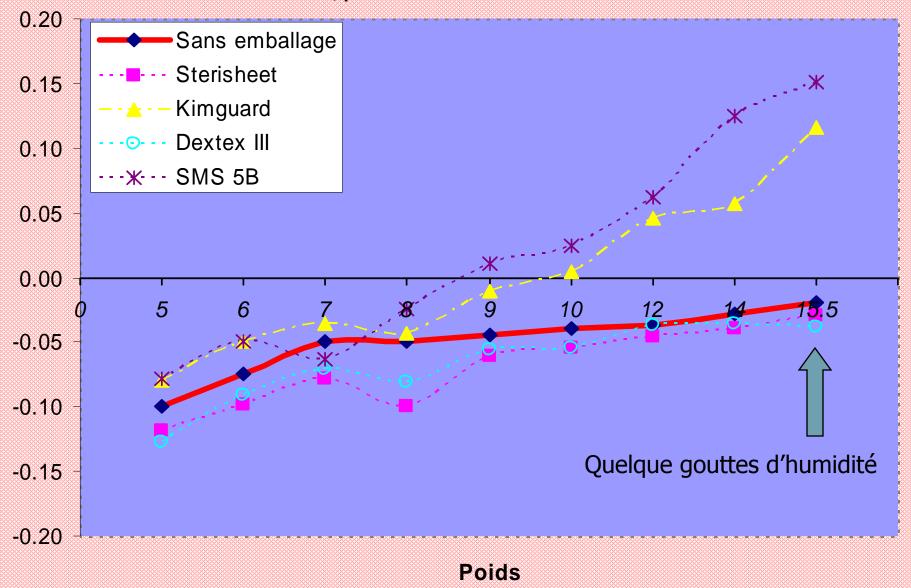
- Guide pour la validation et de contrôle de routine des procédés de stérilisation à la vapeur d'eau dans les établissements de soins
 - Annexe IV
 - Toute modification du procédé, du dispositif ou du stérilisateur doit être accompagnée d'une évaluation des conséquences sur l'efficacité du procédé de stérilisation
 - Documenté
 - Exemple : Changement d'emballage

Quels contrôles?

Répartition des températures selon les


critères

 Contrôle visuel de l'intégrité de l'emballage et de la siccité


Etude de l'importance de deux types d'emballages sur la siccité des charges métalliques en conteneur

F. Cavin, P. Vanautryve, Zentralsterilisation 12. Jahrgang, 56 -61, 2004

Taux de siccité avec et sans emballage

Siccité (1)

- Prototype de sachet 21 x 42 cm
- Que mettre dans emballage ?
 - Choix de vis normées (EN 868-8)
 - Poids ~90 g
 - Combien ?
 - 5, 7 et 12 vis par sachet
 - 10 sachets par panier de stérilisation

Siccité (2)

- Stérilisation à la vapeur d'eau
 - 134° C 18 minutes
 - 18 paniers de stérilisation (2/3) par charge
 - Poids de 7 kg, 10 Kg et 13 kg par panier selon le nombre de vis par sachet
 - Pesage
 - Avant stérilisation
 - 5 minutes après stérilisation + observation visuelle
 - 2 heures après stérilisation + observation visuelle

Résultats siccité (1)

- Contrôle visuel
 - 7 Kg: visuellement sec
 - 10 Kg: visuellement sec
 - 13 kg : présence d'eau résiduelle
 - Si le sachet se retrouve positionné horizontalement, il se forme notamment des gouttières avec des restes d'humidité

Test avec une charge mixte

- 1ère charge, cycle instruments métallique
 - Godets
 - Champs en tissus
 - Instruments à la pièce
 - Câble
- Résultats :
 - Conformes, sauf

Test avec une charge mixte

- 2ème charge et 3ème charge
 - deux stérilisateurs différents
 - cycle textile
- Résultats
 - Tous les emballages sont intègres

EN ISO 11607-1, -2

- Supplément 2012
 - Pour une modification de matériaux, refaire tout ou partie de la QO et QP
 - Voir Check-listes
 - Emballages soudés
 - Emballages pliés
 - Conteneurs

Recommandations pour la validation des procédés d'emballage selon EN ISO 11607-2

Validation

- Plan de validation
- QI : qualification de l'installation
- QO : qualification opérationnelle
- QP: qualification des performances
- Contrôles de routine

Plan de validation

- Responsabilités
- Description de la soudeuse
- Description du matériau
- Description du procédé de stérilisation
- Etapes de qualification
 - QI, QO, QP
- Acceptation de la validation

QI

- Instructions de travail ?
- Informations générales sur la soudeuse
 - Type
 - Année de construction
 - Emplacement
 - Etc.
- Conditions d'installation
- Documentation

Ql

l d) Caractéristiques de sécurité

Paramètres	Requis		Existant	
Largeur de la soudure	6 mm ³¹			
Distance par rapport au DM	30 mm ³²			
Conditions remplies	oui oui	non	Date/signature :	

En général, le mode d'emploi suffit à prouver ces aspects. Les points suivants doivent cependant également être contrôlés par une personne habilitée :

Description	Conforme		Observation
La soudeuse est-elle raccordée correctement ?	oui oui	non	
La soudeuse ne présente-t-elle aucun défaut de sécurité apparent (défaut sur le boîtier, les câbles électriques, la prise, etc.) ?	oui oui	non	
La soudeuse ne présente-t-elle aucun défaut de fonctionnement (bruits incon- nus, cliquetis, grincements, etc.) ?	oui oui	non	
Conditions remplies	□ oui	non	Date/signature :

QI

- Paramètres critiques
 - Température de scellage (140° C 155° C)
 - Pression de scellage (80 120 N)
- Maintenance
- Etalonnage
- Formation des collaborateurs

Annexe A.3 : Check-list Qualification opérationnelle (QO) « Thermoscellage de sachets et de gaines » 36

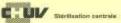
Critères			Limite inférieure (LI)		Limite supérieure (LS)	
1. Température requise (selon producteur de l'emballage = P^{37})			LIP		LSP	
2. Température effective (mesurée/lue) lors de l'essai			LI		LS	
3. Exigence			LI ≥ LIP		LS≤LSP	
4. Exigence ligne 3 conforme	□ oui	non	X [†]		2	
Propriétés qualitatives			Conforme		Conforme	
Scellage intact sur toute la largeur de l	la soudure		□ oui	non	□ oui	non
Approuvé par						
Méthode d'essai :*			Nom/signature		Nom/signature	
Pas de rainures ni de scellages ouverts			□ oui	non	Oui	non
Approuvé par						
Méthode d'essai :*			Nom/signature		Nom/signature	
Pas de perforations ni de déchirures			□ oui	non	Oui	□ non
Approuvé par						
Méthode d'essai :	_*		Nom/signature		Nom/signature	
Pas de délamination ou de séparation e	des matériaux		□ oui	non	□ oui	□ non
Approuvé par						
Méthode d'essai :*			Nom/signature		Nom/signature	
Température fixée (T) pour la QP (valeur moyenne des limites supérieur effective enregistrée lors du contrôle)	e et inférieure de	e la température	T =			

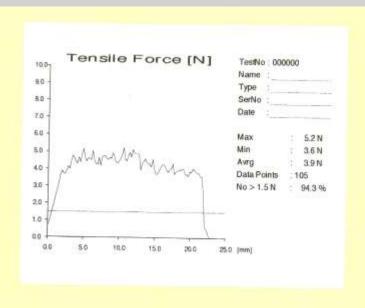
^{*} Des méthodes d'essai sont décrites au tableau 3.

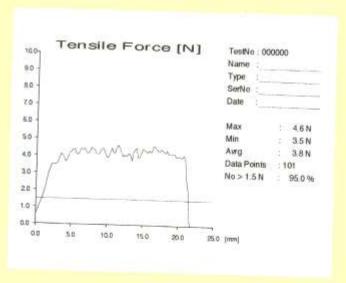
QP

- Température
 - T° fixée, T° mesurée, tolérance ± 5° C
 - Type de stérilisation : vapeur, EO, VH₂O₂, etc.
 - Cycle de stérilisation avec contenu A, B et C
 - Résistance des soudures ≥ 1.5 N
 - Aspect du scellage
 - Scellage intact sur toute la largeur
 - Pas de rainures, ni de scellage ouvert
 - Pas de perforation, ni de déchirure
 - Pas de délamination ou de séparation des matériaux

Résistance des soudures


- Essai manuel
- Test dynamométrique




Résistance des soudures : résultats

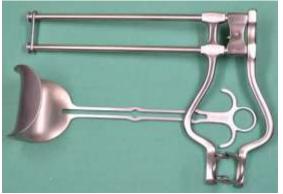
- Essai manuel
 - Résultats favorablement surprenants
- Tests dynamométriques
 - Selon guide validation des emballages
 - 3 sachets par charge stérilisée à la vapeur d'eau (134° C – 18 minutes)
 - 5 échantillons par sachet

IIIIE OOM	ROLE DES	idetteme Ashida	2000		de classement. Emb		
SOUDEUSES BH04		(PMU) 00611400001 □ 00611400002 □ 00611400003 □ 00611400005 □ 00611400006 □		00611400007 □ 00611400008 □ EQ 02533 □ EQ 01083 □ EQ 08231 □		EQ 09184 (EQ 09185 (EQ 09186 (EQ 09187 (
SOUDEUSE	S BH05	EQ 03	449 🗆				
SOUDEUSE	S HO	HO-0	595 🗆	HO-065	0 🗆		
Gaine panie	lage ler plastique 18 x er plastique 15 cn nage de l'appare Valeurs de	1	T HT 150SC		Valeur 4	Valour 5	
	référence	STAMAN	10000000	NAIWONA.	100000000	3353/1032	
Echantillon 1	Tension moyenne >1,5 N						
	Pourcentage > 50%						
chantillon 2	Tension moyenne >1,5 N						
	Pourcentage > 50%						
chantillon 3	Tension moyenne >1,5 N						
	Pourcentage > 50%						
Walling	euse conforme			· ·		П	
DATE:	euse contorme			VISA	non conforme		
Remarque	s et actions entr	reprises si N-	C:	Date/visa du r	esponsable SC	L /RUP	

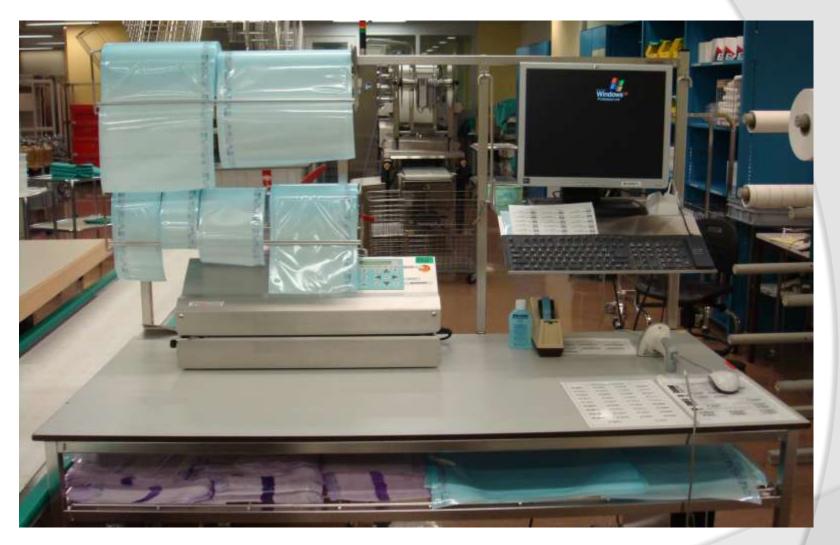
Toutes les valeurs sont > 1.5N/15 mm

Conclusions 1er essais

- Qualités indéniables
 - Pelabilité
 - Résistance
- Validation des charges importante pour la siccité
- Attention aux charges textiles
- Présence de quelques plis de « cassure »
 - Absence de trous observée au microscope


2^{ème} série d'essais (octobre 2010)

- Emballage légèrement modifié
- Tests similaires aux 1^{er} essais effectués
- Résultats
 - Aspect : agréable, souple, pas de plis de cassure, pas froissés après stérilisation
 - Résistance : aucune déchirure, perforation, éclatement
 - Siccité : conforme pour les poids validés
 - Pelabilité : aisée, sans déchirure ni peluchage


Mise en pratique (fin 2011)

- 1ère idée
 - Utilisation pour les dispositifs problématiques qui perçaient les emballages
 - Exemples :

Température de scellage 150° C

Soudeuse HM 750

Soudeuse HM 850

Importance de la coordination des vitesses de défilement

Mise en pratique

- Présentation au bloc opératoire de la maternité (3 salles d'opération)
- Conséquence
 - Réflexions sur 1 ou 2 emballages ?
 - Comment gagner de la place dans le stockage ?
- Décision
 - Passage à un seul emballage pour tout le matériel en sachet individuel
 - Plus de protection plastique sur les instruments piquants et/ou tranchants

Mise en pratique (2)

- Passage à l'ultra en février 2012 (un seul emballage) au bloc de l'hôpital de l'enfance (2 salles d'opération)
- Autres DMx problématiques isolés ?
 - Attention
 - T° C de scellage 150° C, les autres 175° C
- Attente du retour d'expérience et de pouvoir définir des limites pour passer à l'ultra au bloc principal

Permet de faciliter la coupe des gaines

Contrôle de routine

 Pas de seal-check existant sur le marché pour l'Ultra

Contrôle de routine

Solution de bleu de méthylène

 avec alcool, ne peut pas être utilisée, car donne des résultats erronés

Impact sur les coûts

Exemple 1: ciseau à fil (emballage standard)

	Désignation	Prix unitaire	Nombre	Coût	
1	Sachet 7.5 cm x 25 cm	0.035	1	0.035	0.423
2	Sachet 10 cm x 40 cm	0.0875	1	0.088	
3	Protection rouge	0.3	1	0.300	
4	Temps de travail (seconde)	1.333	37	0.493	
	Total			0.916	

Exemple 2: ciseau à fil (emballage ultra)

	Désignation	Prix unitaire	Nombre	Coût
1	Gaine ultra 90 mm x 70 m	19.7	19	0.053
2				
3				
4	Temps de travail (seconde)	1.333	15.2	0.203
	Total			0.256

Impact sur les coûts (2)

Exemple 3: cuvette DGO5 (emballage standard)

			Prix			
	Désignation	Référence	unitaire	Nombre	Coût	
1	Champ non tissé Kimguard 1000 x 1000	727518	0.686	1	0.686	1.408
2	Sachet Cleantex 420 x 600	727470	0.7221	1	0.722	
3					0.000	
4	Temps de travail (seconde)		1.333	115	1.533	
	Total				2.941	

Exemple 4: cuvette DGO5 (emballage ultra)

			Prix			
	Désignation	Référence	unitaire	Nombre	Coût	
1	Gaine ultra 420 mm x 70 m	935811	91.8	22		0.289
2						
3						
4	Temps de travail (seconde)		1.333	25		0.333
	Total					0.622

Conclusion

- L'introduction d'un nouvel emballage demande de déterminer l'influence de ce changement sur le processus d'emballage et d'élaborer sur cette base un plan de revalidation selon la EN ISO 11607.
- L'introduction d'un nouvel emballage peut aussi avoir des répercussions sur le processus de stérilisation, une revalidation selon la norme correspondante sera par conséquent aussi nécessaire.

La réussite appartient à tout le monde. C'est au travail d'équipe qu'en revient le mérite.

Frank Piccard

Bibiographie

- Guide pour la validation et le contrôle de routine des procédés de stérilisation à la vapeur d'eau dans les établissements de soins, Swissmedic 2010
- Etude de l'importance de deux types d'emballages sur la siccité des charges métalliques en conteneur. F. Cavin, P. Vanautryve, Zentralsterilisation 12 Jahrgang, 56-61, 2004
- Taux de siccité avec et sans emballage, F. Cavin et al, Poster CEFH 2005
- Recommandation pour la validation des procédés d'emballage selon l'EN ISO 11607-2,
 Zentralsterilisation supplément 2012
- EN ISO 11607-1 : 2006, Emballages des dispositifs médicaux stérilisés au stade terminal, Partie 1 : Exigences relatives aux matériaux, aux systèmes de barrière stérile et aux système d'emballage.
- EN ISO 11607-2 : 2006, Emballages des dispositifs médicaux stérilisés au stade terminal, Partie 2 : Exigences de validation pour le procédé de formage, scellage et assemblage
- EN 868-5 : 2009, Matériaux d'emballage pour les dispositifs médicaux stérilisés au stade terminal, Partie 5 : sachets et gaines thermoscellables constitués d'une face matière poreuse et d'une face film plastique – exigences et méthodes d'essai
- EN 868-8 : 2009, Matériaux d'emballage pour dispositifs médicaux stérilisés au stade terminal – partie 8 : Conteneurs réutilisables de stérilisation pour stérilisateurs à la vapeur d'eau conforme à l'EN 285 – Exigences et méthodes d'essai